

Semester Two Examination, 2021

Question/Answer booklet

MATHEMATICS SPECIALIST UNITS 3&4 Section One: Calculator-free WA student number: In figures In words Your name Time allowed for this section Number of additional

Reading time before commencing work: Working time:

five minutes fifty minutes Number of additional answer booklets used (if applicable):

Materials required/recommended for this section

To be provided by the supervisor This Question/Answer booklet Formula sheet

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: nil

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised material. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Structure of this paper

Section	Number of questions available	Number of questions to be answered	Working time (minutes)	Marks available	Percentage of examination
Section One: Calculator-free	8	8	50	48	35
Section Two: Calculator-assumed	13	13	100	90	65
				Total	100

Instructions to candidates

- 1. The rules for the conduct of Trinity College examinations are detailed in the *Instructions to Candidates* distributed to students prior to the examinations. Sitting this examination implies that you agree to abide by these rules.
- 2. Write your answers in this Question/Answer booklet preferably using a blue/black pen. Do not use erasable or gel pens.
- 3. You must be careful to confine your answers to the specific question asked and to follow any instructions that are specific to a particular question.
- 4. Show all your working clearly. Your working should be in sufficient detail to allow your answers to be checked readily and for marks to be awarded for reasoning. Incorrect answers given without supporting reasoning cannot be allocated any marks. For any question or part question worth more than two marks, valid working or justification is required to receive full marks. If you repeat any question, ensure that you cancel the answer you do not wish to have marked.
- 5. It is recommended that you do not use pencil, except in diagrams.
- 6. Supplementary pages for planning/continuing your answers to questions are provided at the end of this Question/Answer booklet. If you use these pages to continue an answer, indicate at the original answer where the answer is continued, i.e. give the page number.
- 7. The Formula sheet is not to be handed in with your Question/Answer booklet.

35% (48 Marks)

Section One: Calculator-free

This section has **eight** questions. Answer **all** questions. Write your answers in the spaces provided.

Working time: 50 minutes.

Question 1

(a) Determine $\int \cot(2x) dx$. $\frac{\text{Solution}}{\int \cot 2x \, dx = \frac{1}{2} \int \frac{2\cos 2x}{\sin 2x} dx}$ $= \frac{1}{2} \ln|\sin 2x| + c$

Specific behaviours \checkmark writes in form $f'(x) \div f(x)$ \checkmark correct integral with constant

(b) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \left(3 - \sec^{2}\left(\frac{x}{2}\right) + 3\tan^{2}\left(\frac{x}{2}\right)\right) dx.$$
 (3 marks)
$$\frac{Solution}{\int_{0}^{\frac{\pi}{2}} 3 - \sec^{2}\left(\frac{x}{2}\right) + 3\tan^{2}\left(\frac{x}{2}\right) dx = \int_{0}^{\frac{\pi}{2}} 2\sec^{2}\left(\frac{x}{2}\right) dx$$
$$= \left[2(2)\tan\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{2}}$$
$$= 4$$
$$\frac{Specific behaviours}{\checkmark \text{ simplifies}}$$
$$\checkmark \text{ antiderivative}$$
$$\checkmark \text{ evaluates}$$

(5 marks)

(2 marks)

SPECIALIST UNITS 3&4 TRINITY COLLEGE

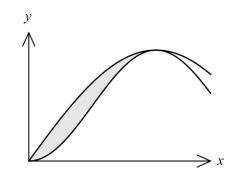
4

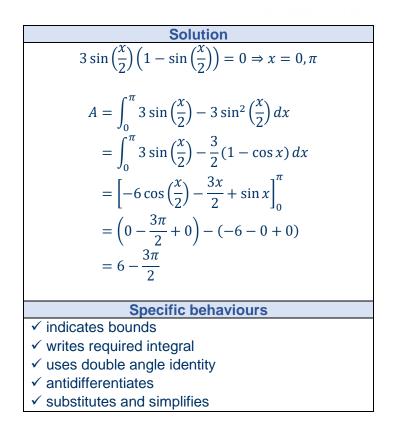
(5 marks)

Question 2

The curves $y = 3 \sin\left(\frac{x}{2}\right)$ and $y = 3 \sin^2\left(\frac{x}{2}\right)$ are shown to the right.

Determine the area of the shaded region trapped between the curves.





See next page

Question 3

Consider the system of equations (where c is a constant) given by

Eliminate using 2(1) - (2):

x + y + cz + 1 = 02x + y - z - 5 = 02x + 2y + z = 0

Solution

2x + 2y + 2z = -22x + 2y + z = 0

(a) When c = 1, solve the system of equations and interpret your solution geometrically.

z = -2	
Substitute for z and then $(2) - (1)$:	
x + y = 1	
2x + y = 3	
x = 2	
Substitute for x, z and then(1):	
2 + y - 2 + 1 = 0	
y = -1	
Hence the system is three planes that intersect at the point $(2, -1, -2)$).
Hence the system is three planes that intersect at the point $(2, -1, -2)$ Specific behaviours	:).
	2).
Specific behaviours	2).
Specific behaviours ✓ eliminates a variable correctly	2).

(b) State the value of *c* for which the system of equations has no solution and explain the geometric interpretation of this. (2 marks)

Solution		
No solution when $c = \frac{1}{2}$. [(1) and (3) have parallel normals.]		
With this value, the system represents two non-coincident parallel planes cut by a third plane.		
Specific behaviours		
✓ states value		
✓ geometric interpretation		

(4 marks)

Question 4

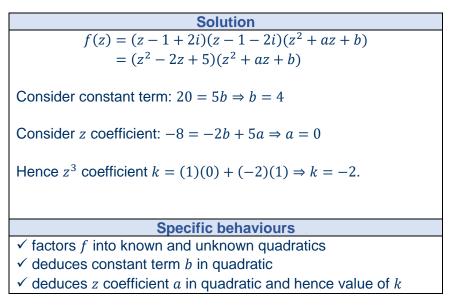
Consider $f(z) = z^4 + kz^3 + 9z^2 - 8z + 20$, where k is a real constant.

The equation f(z) = 0 has a solution z = 1 - 2i.

(a) State a second solution to f(z) = 0.

Solution
z = 1 + 2i
Specific behaviours
✓ indicates conjugate root

(b) Deduce that k = -2.



(c) Determine all other solutions of the equation f(z) = 0.

Solution
$z^2 + 4 = 0$
$z = \pm 2i$
Specific behaviours
✓ factors quadratic
✓ states both solutions

(2 marks)

(6 marks)

(1 mark)

(3 marks)

Question 5

(7 marks)

Functions *f*, *g* and *h* are defined by $f(x) = \sqrt{25 - x}$, $g(x) = \frac{10}{x}$ and $h(x) = f \circ g(x)$.

(a) Determine the defining rule for h(x) and state its domain.

(4 marks)

Solution	
$h(x) = f \circ g(x) = \sqrt{25 - \frac{10}{x}}$	
Note, $x \neq 0$.	
When $x < 0$, the radicand $\left(25 - \frac{10}{x}\right)$ will always be positive.	
When $x > 0$, require radicand to be positive:	
Hence domain: $25 - \frac{10}{x} \ge 0 \Rightarrow x \ge \frac{2}{5}$ $D_h = \left\{ x \in \mathbb{R}, x < 0 \cup x \ge \frac{2}{5} \right\}$	
Specific behaviours	
✓ defining rule	
✓ domain excludes zero	
✓ domain allows all $x < 0$	
✓ domain allows all $x ≥ 0.4$	

(b) Determine the defining rule for $h^{-1}(x)$ and state its range.

(3 marks)

Solution		
Inverse:		
$x^2 = 25 - \frac{10}{y}$		
$\frac{10}{y} = 25 - x^2$		
$y = h^{-1}(x) = \frac{10}{25 - x^2}$		
Range of inverse same as domain of function:		
$R_{h^{-1}} = \left\{ y \in \mathbb{R}, y < 0 \cup y \ge \frac{2}{5} \right\}$		
Specific behaviours		
✓ swaps variables and eliminates root		
✓ correct inverse		
\checkmark uses domain from part (a) for range of inverse		

SPECIALIST UNITS 3&4 TRINITY COLLEGE

CALCULATOR-FREE SEMESTER 2 2021

Question 6

(6 marks)

(2 marks)

(a) Express
$$\frac{6}{(u-3)(u+3)}$$
 in the form $\frac{a}{u-3} + \frac{b}{u+3}$.

Solution

$$6 = a(u+3) + b(u-3)$$

$$u = 3 \Rightarrow a = 1, \quad u = -3 \Rightarrow b = -1$$

$$\frac{6}{(u-3)(u+3)} = \frac{1}{(u-3)} - \frac{1}{(u+3)}$$
Specific behaviours
 \checkmark indicates appropriate method
 \checkmark correct partial fractions

(b) Use the substitution $u^2 = x + 7$ to determine the indefinite integral *I* shown below in the form $\ln(g(x)) + c$ for x > 2. (4 marks)

$$I = \int \frac{3}{(x-2)\sqrt{x+7}} dx$$

Solution

$$u^{2} = x + 7 \Rightarrow 2u \, du = dx$$

$$I = \int \frac{3 \times 2u}{(u^{2} - 9)u} du$$

$$= \int \frac{6}{u^{2} - 9} du$$

$$= \int \frac{1}{u - 3} - \frac{1}{u + 3} du$$

$$= \ln\left(\frac{u - 3}{u + 3}\right) + c$$

$$= \ln\left(\frac{\sqrt{x + 7} - 3}{\sqrt{x + 7} + 3}\right) + c$$
Specific behaviours
 \checkmark writes integral in terms of u
 \checkmark simplifies using result from part (a)
 \checkmark obtains antiderivative
 \checkmark writes in required form

8

Question 7

(6 marks)

The functions f(x) and g(x) are polynomials in x of degree two and degree one respectively, and their quotient is the rational function $h(x) = \frac{f(x)}{g(x)}$.

The graph of y = h(x) passes through the point (0, -1), has vertical asymptote x = -3 and has roots at x = -2 and x = 3.

Determine the equation of the other asymptote of the graph of y = h(x).

Solution
Using roots:
f(x) = a(x+2)(x-3)
Using asymptote:
g(x) = m(x+3)
Hence
$h(x) = \frac{f(x)}{g(x)} = \frac{a(x+2)(x-3)}{m(x+3)}$
Using point:
$-1 = \frac{-6a}{3m} \Rightarrow \frac{a}{m} = \frac{1}{2}$
Hence
$h(x) = \frac{1}{2} \left(\frac{(x+2)(x-3)}{x+3} \right)$ $= \frac{1}{2} \left(\frac{x^2 - x - 6}{x+3} \right)$
Express as proper fraction: $h(x) = \frac{1}{2} \left(\frac{x^2 + 3x}{x + 3} + \frac{-4x - 12}{x + 3} + \frac{6}{x + 3} \right)$ $= \frac{x}{2} - 2 + \frac{6}{2x + 6}$
Hence equation of oblique asymptote:
$y = \frac{x}{2} - 2$
^y ⁻ ² ²
Specific behaviours
\checkmark uses roots to obtain factors of <i>f</i>
\checkmark uses vertical asymptote to obtain g
✓ uses point to obtain constant
\checkmark indicates correct $h(x)$
\checkmark expresses $h(x)$ as proper fraction
✓ states correct equation for asymptote

SPECIALIST UNITS 3&4 TRINITY COLLEGE

End of questions

Question 8

(a)	Solve the equation	(2 m	
		Solution	
		$z = 2\operatorname{cis}\left(\frac{2\pi}{9} + \frac{2n\pi}{3}\right)$	

 $z = 2 \operatorname{cis} \left(-\frac{4\pi}{9} \right)$

Solution Sum of roots: $1 + w + w^2 = 0$ Product of roots: $(1)(w)(w^2) = w^3 = 1$

Specific behaviours

(b) 1, w and w^2 are the three cube roots of unity.

Hence

(i) State the value of $1 + w + w^2$ and the value of w^3 .

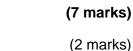
Let $u = (1 + 3w + w^2)^2$ and $v = (1 + w + 3w^2)^2$.

✓ sum and product

(ii) Show that u + v = -4 and uv = 16.

Solution $u = (1 + w + w^2 + 2w)^2$ $= (0 + 2w)^2 = 4w^2$ $v = (1 + w + w^2 + 2w^2)$ $= (0 + 2w^2)^2 = 4w^4 = 4w$ Hence $u + v = 4w^2 + 4w$ $=4(w^{2}+w+1)-4$ = -4And $uv = 4w^2 \times 4w$ $= 16w^{3}$ = 16 **Specific behaviours** \checkmark simplifies u \checkmark simplifies v✓ derives value for sum ✓ derives value for product

(4 marks)



CALCULATOR-FREE

SEMESTER 2 2021

(1 mark)

Supplementary page

Question number: _____